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ABSTRACT

The bodý-0- tt report wu rit*-n as ;ot.•• ai, .uu L. •Li

Algorita.. "ot i• o w- Goi-waio .o +he Agd consists of six

ALGOL procedures with comments. Procedure FASTTRAN 'OHM computes the

complex finite Fourier transform or its inverse, using a modified version

of the fast Fourier transform algorithm proposed by Cooley and Tukey.

Procedure REALTRARSFOM similarly computes the real Fourier transform

and inverse. The remaining four procedures are building blocks used

in the first two procedures: they ay be combined in other ways, for

example, to form procedures for computing convolutions and power spectral

density function estimates. The fast Fourier transform is a significant

advance over previous methods, in that the number of arithmetic operations

is proportional to n log2 n instead of n ). Detailed methods of computing

this transform are shown here in the language of ALGOL. A new approach

to organizing the computations is used, one that makes practical the

solution of large problems in which data overlay within high speed storage

will occur.
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The following procedures are based on the Cooley-Tukey algorithm [1,2.,3]

for computing the finite Fourier transform of a complex data vector; the

dimension of the data vector is assumed here to be a power of two. Procedure

FASNTRUSFYME computes either the complex Fourier transform or its inverse.

Procedure REALTRANSFORI computes either the Fourier coefficients of a sequence

of real data points or evaluates a Fourier series with given cosine and sine

coefficients. The number of arithmetic operations for either procedure is

proportional to n log2 n, where n is the number of data points.

Procedures FASTFMIER, R E!OTIERS, REORDER, and REALTRAN are building

blocks, and are used In the two complete procedures mentioned above. The fast

transform can be cowputed in a number of different ways, and these building

block procedures were written so as to make practical the computing of large

transforms on a system with multiprograming and/or virtual memory. Data is

accessed in sub-sequences of consecutive array elements, and as much computing

as possible is done in one section of the data before moving on to another.

Procedure FASTFP(XER computes the Fourier transform, or inverse, of data in

reverse binary order and leaves the result in normal binary order. Procedure

MODER permutes a complex vector from binary to reverse binary order or from

reverse binary to binary order; this procedure also p.-rmutes real data in

preparation for efficient use of the complex Fourier transform. The procedure

REALTRAN is used to unscramble and combine the complex transforms of the even

and odd numbered elements of a sequence of real data points; this procedure is

not restricted to powers of two and requires only that the number of data points

be even.

*This work was supported by Stanford Research Institute, out of Research
and Development funds
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procedure FASTTRANSFORM(A, B, m, inverse);

value m, inverse; integer m; Boolean inverse;

array A,B;

comment Computes the finite Fourier transform of 2 m complex

data points, using the Cooley-Tukey algorithm (1). The

parameter m determines the dimension n=2m of the transform

m>l is assumed. The arrays A[O:n-l] and B[O:n-l] initially

contain the real and imaginary components of the data

vector, and, upon completio4 contain the transformed values.

If inverse is falsp, the Fourier transform

n-l
(x i+iy J) = 1• 7- (uk~bk) e~xp (i2TNjk/n)

for J=O,li, ... ,n-1

is computed, where the terms (ak+ibk) represent the initial data

array values and (x +iyJ) represent the transformed

values. If inverse is true, the inverse (complex

conjugate) Fourier transform

n-l

(x+iyj) = .1 (ak+ibk) exp (-i2rrjk/n)

k-0 for J=O, l, ... , n-

is computed, where (ak+ibk) and (xJ+iy3 ) again represent

the initial and transformed values. Tie transform

followed by the inverse transform or the inverse

transform followed by the transform gives an identity

transformation. The procedure FASTFOVRIE and REORDER

are used by this procedure and must also be declared;

begin if inverse then

begin FASTFOURIER(AB,Bm,l/sqrt(2tm),true);

REORDER(A, B, m, false);



end else

begin FASI¶VURIER(A, B,., 1/s qrt (2tm), false)

MREOIER (A, B,.,m. ais e);

end

end FASITrRANSFORM;



procedure REALTRANSFORM(A, B, m, inverse);

value minverse; integer m; Boolean inverse;

r A,B;

comment Computes the finite Fourier transform of 2 e+l> 8

real data points, using the Cooley-Tukey algorithm[l,2].

If inverse is false, the arrays A[O:n] and B(O:n], whtre

m mrn2, are assumed to contain the first 2 real data

points x 0 ,Xl,...X n1 as A(0], A[l],...A[nr-1] and

the remaining 2 m real data points xnx n+l,...x2n-1 as

B[O), B(I1,... B[n-1]. On completion of the transform

the arrays A and B contain respectively the Fourier

cosine and sine coefficients a.k and bk, computed

according to the relations

2n-1

k n xj cos (njk/n) for k=O,1,... n

J=O
and 2n-1

bk l x sin (rrjk/n) for k=0,1,... n

If inverse is true the arrays A and B are assumed to

contain initially n+l cosine coefficients a0 ,a 1 ,.., an

and n+l sine coefficients b0 ,bl,... bn, where

b0 = bn = 0. The procedure evaluates the corresponding

time series x 0 ,x 1,... X2 n-l, where

n-i a0 an
X j = 2-- + z ak cos (,Jk/n) + bk sin (•jk/n)J + 2n

k.=l

and leaves the first n values as A(O], A[I],... A[n-l] and

the remaining n values as B[OJ, B(l],... B[n-1].
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The procedures FASTFOURIER, REVERSESOURIE, REORDER, and

REALTRAN are used by this procedure, and must also be

declared;

begin if inverse then

begin RFALTRAN(A, B, 21m, true true);

IFASTOURIER(A B, B 1/2, true);

REOmRER(A, B, ., true);

end else

begin REORDE(A, B, m, true);

REV•EsOURIER(A, B, m, 1/2t (zi+l), false);

REALTRAN(A, B, 2tm , false false);

end

end REALTRANSFORM;
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procedurk FASTFOURIER(A, B, m, scale, negexp);

value m, scale, negexp; integer m; real scale;

Boolean negexp; arra A, B;

comment Computes the finite Fourier transform of 2 complex data

points, using a modified version of the Cooley-Tukey fast

transform algorithm [i]. The data is assumed to be in normal

order in arrays A[O:n-1] and B[O:n-lJ for the real and imaginary

components respectively, where n=2 m is the dimension of the

transform and m>1 is assumed. The transformed result replaces

the original data, but is arranged in reverse binary order.

That is, the jth value of the result, where j = Jam1 2m1 +Thati

m-2 + ... + j 1 2 + J0 ' is found in location

JO2 1j2m-2 + "'" + Jm-22 + JM-i Of arrays A and B.

Procedure REORDER can be used to permute the result to normal

ordering, if desired. If negexp is false the Fourier

trans form

n-i

(xa + i = scale > (ak+ibk) exp (i2 jk/n)

k=O
for j = O,1,...n-1

is computed, and if negexp is true, the corresponding

complex conjugate transform is computed, using a minus sign

in the exponential terms. The terms (ak+ibk) represent

the initial values, and (x3 +iyj) represent the transformed values;

begin integer J,k, kk,kb,ks, Jj, n,nq,span;

real re, iur, cn, sn, rad;

integer array C,D[O:m]; array CCSS[O:m];

C(O] := n :1 .;
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ks : n;

for kk := -C [m-1]-1 atep -1 until 0 do

begin ks :=ks-i; re :=A~kk]-A~ksJ;

A(kk] : scalex(A~kkj+A[ks]);

Afks] :=scalexre; imi: B~kkj-B~ks];

B[kk] : scalex(B~lck]+B~ksj);

B[ksJ scale)(imf

end;

33 : kb :=0; 3 : m :=m-2, nq :=C~m);

for k :- 0 step 1 until m do D(kJ : C~ir-k]

rad := 6.28318530718/n; V- to L2;

L: if 3j'D(3J then

begin 33 := 3-D(jJ; 3 := 3+1; go. to L end

else aa := 3+D(j]

L2: span := C~jJ; if jj<M(J] then

begin k :=spanxjj;

CC(JI: cn sin((nq-k)xrad);

SSUj : sn :=sin(kxrad)

end else

begin en :=-SS[3]; sn :=CC(JJ end;

if negexp then sn :=-en;

for~ kk :=kb+span-1 step -1 until kb do

bLRin km := kk+span;

re :=cnxA[ks]-snxBtksj;

im :=snxA~ks]-ecnxB~ksJ;

A~ksJ : A~kk]-re; A~kk] : A~kk]+re;

B~ksj : B(kkJ-iiu; B~kkj : B~kkJ+im;

end;

4 4P 4%A* 4-1



begin j :=i-; to L2 end;

kb := kb+2; if kb~Zn thenl f~ to L;

end FASTFOLURIER;
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procedure REVERSEFOUIUER(A, B, m, scale, negexp);

value mscalenegexp; integer m; real scale;

Boolean negexp; array A, B;

comment Computes the finite Fourier transfoi., of 2m complex data

points, using a modified version of the Sande-Tukey [2,3] fast

transform. The data is assumed to be in reverse binary order

in arrays A[O:n-l] and B[O:n-l] for the real and imaginary

components respectively, where n=2 and m>l are assumed.

The data may be in this ordering due to an earlier transform

by procedure FASTFOURTER or a permutation by procedure

REORDER. The transformed result replaces the original

data, and is left in normal ordering. If negexp is false

the Fourier transform

n-l

(X+iy = scale (aki4bk) exp (i2njk/n)

k=- 0
for J=O,l,...n-1

is computed, and if negexp is Lruce. the corresponding

complex conjugate transform is computed, using a minus

sign in the exponential terms. The terms (ak4ibt)

represent the initial vdlues, and (x +i.j) the transformed

values;

begin integer J, k, kk, kb, ks, ii, n, nh, , span;

real re, ira, cn, sn, rad;

integer array C,D[Olm]; ar-ay CC,SS[O:m" ;

C[(] := n := 1;

for k := 1 step 1 until m do C[k] n := n+n;

nh := C[m-l]; nq := C[m-2];

rad := 6 .2 8 318 530718/n;



m := mu-2; ji nh-i;

for k :=0 step 1 until m do D~k] nh-C~k];

for kb :~n-2 step -2 until 0 do

begin span :=1; j m; k :=jj;

L: if k~nq then

begin en := SS[j]; sn -CC[jJ end else

begin CCfj] en -sin((k-nq)xrad);

SS[j] s sin((nh-k)xrad)

e-nd!

if negexp thei.ý sn -

for 1kk: kb+span-1 2t!Ep -1 unTil kb :o

'Uerzri ku. kk+span;

r--: A[kk]-A[ks]; A[kk] A~kkj+A[ks];

im BI~kk!-BIks I; B[kk] : B[kk]+B(ks);

A~k~iJ := cnixre-sr.<irn; Bfks] : snxre+cnxim;

end:

if' JJ<[j] then

begin jj :=jj+C[jJ; j : J-1; span :=span+span;

if J<DJ then So to L2; k :=k+k; to. L

end

else jj : jj-C[j]

end;

L2- span :- nh; ks :=kb :=nh-i;

for kk :=0 step 1 until kb do

begin ks ks+1; re :=A[kk]-Afks];

A[kk] scalex(AjkkJ+A[ksj); A~ks) scalexre;

im :=B[kk]-B[ks]; B[kklcJ scalex(B[kk]+B~ks 3);

B[ksj scalexim

end;
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procedure REORDER(A, B, m, reel); value m, reel;

integer m; Booltan reel; array A, B;

comment If reel is false the 2M elements each of arrays A[O:n-l]

and B[O:n-l] are permuted from normal to reverse binary

ordL .g or from reverse binary to normal order. The pair

of values in location J = J m1 2m1 +j m.12m-2 + ... + Jl2 + 0

is interchanged with the pair of values in location

k = Jo02m1 + j12m-2 + ... + J.m-2 +jm-l Doing the

permutation twice gives an identitL trar,:; formation. If

m+lreel is truej it is assumed that aýsequence of 2 real

values, with the first 2m values in array A and the second

mvalues in array B, is either to be permuted in preparation

for computing Fourier coefficients or is the expected

final result of evaluation of a real Fourier series. The

permutation made is first to interchange each even numbered

entry in B with the next higher odd numbered entry in A,

then to permute adjacent pairs of entries in A and B to reverse

binary crder. Again, doing the perLutation twice gives an identity

transformation, m > 1 is assumed;

begin integer ij,jj,k,kk,kb,!"s,kulir, r,;

real t;

integer array C,LST[O:m];

C(0J n 1;

for k 1 step 1 until m do C[k] := n := n+n;

J -; i := kb := 0; if reel then

begin ku := n-2; for k := 0 step 2 until ku do

begEn t := j[k+lj; Afk-l] - 3[k.; Bfkj := t end

end else

M := m-l; lim := (m+2) -2;
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L: ku :=ka C[J]+kb; jj : C~cn-j3; kk :=kb+jj;

L2: kc: kk+jj;

L3: t,: A~kk]; Afkk] AfksJ; A(ksJ t

t :=B~kkJ; B~kk] : Bfks]; B~ksj : t;

Ikk: kk+l; ka :=ks+1;

If kk<E then o to L3;

k:=kk+jj; ks := ks+jj;

if' kk~Cku then Zo to L2;

if' J>lim then

begin j : J-1; i := i+1; LSTfi] J; &o to L end;

if' i)O chen

begin J : LOT[i]; i i-1; kcb Is; go to L end;9

eind REORDER;
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procedure REALTRAN(A, B, n, negexp, inverse);

value n,negexp, inverse; integer n;

Boolean negexp, inverse; array A, B;

comment If inverse is false this procedure unscrambles the complex transform

of the n even numbered and n odd numbered elements of a

real sequence of length 2n, where the even numbered

elements were originally in A and the odd numbered elements

in B. Then it combines the two real transforms to give the

Fourier cosine coefficients A[O], A[1],... AMn] and sine

coefficients B(O], B[ll,... B(n] for the full sequence of

2n elements. If inverse is true, the process is reversed,

and a set of Fourier cosine and 3ine coefficients is made

ready for evaluation of the corresponding Fourier series by

means of the fast transform. In either case, %he value of

negexp must agree with that used in procedure FASTFOURIER

or REVERSEFOURIE with which REALTRAN is paired. Going in

either direction, REALTRAN scales by a factor of two, which

should be taken into account in deTermining the appropriate

overall scaling;

begin integer J,k, nh;

real aa, ab, ba, bb, re, im, cd, cn, sd, sn, rad, r;

nh nn + 2; rad 3.14159265359/n ;

sd sin(rad); r -(2xsin(O.5xred))t2;

cd := -0.5xr; cn 1; sn := O;

if 1 (negexp inverse) then sd := -sd;

if inverse then

begin cn := -1; cd -cd; B[0) B(n] 0 end else



begin A~nJ : A(O]; B[n] :- B'(O) end;

for 3 :- 0 step 1 until nh do

begin k :=n-j;

aa :-A(J]+A[k); ab :=A[J]-A(kJ;

ba :=B[1]+B[kJ; bb :=B[JJ-B~kJ;

re :=cn~ba+snxab; im :=snxba-cnxab;

B[k] : im-bb; B(j] : im+bb;

A~k] : aa-re; A(3) : aa+re;

cd :~rxcn+cd; cn :=cd+cn;

sd rxsn+sd; sn sd+sn;

end;

if inverse then A(n] :=B(n] 0;

end REALTIRAN;
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These procedures were written originally for use on the Burroughs

B-5500 system. Because of the limitation of no more than 1023 words

in a single dimensioia-- -ray on this system, two-dimensional data arrays

are used for transforms with m>9. With this modification, real transforms

with w16 (217 data points) take about ten minutes of processing time

and six minutes of input-output channel time for the (automatic) transfer

of array rows between disk and core storage. Several transforms of this

size have been computed, while sharing the computer with other programs.

Experience with a large number of transforms with m•>l4 (exceeding actual

core capacity) has shown that multiprogramming caust-s little increase in

running times.
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COMMENT DRIVER PROGRAM FOR TESTING FAST TRANSFORM PROCEDURES

B3EGIN REAL SSleSS!#RXpRY#Rl

INTEGER JI.KPMPNPNNPROMI

ARRAY A*BpxyCO:5123;

COMMENT DECLARE PROCEDURES FASTFOURIERP REVERSEFOURIERP REORDER

AND HEALTRAN;

COMMENT DECLARE PROCEDURES FASTTRANSFORM AND REALTRANSFORM;

M := 9; N := 2PM; COMMENT DIMENSION OF PROBLEM;
ROM ::123; COMMENT INITIAL RANDOM NUMBER, ODD AND < 2+27;
NN ::N-11 FOR J := 0 STEP 1 UNTIL NN DO
BEGIN COMMLNT FILL DATA ARRAYS WITH NORMAL DEVIATES, MEANOv S.D.Z1;
LR: Rom 3589XRDM; RDM := RDM-(RDM 4-134217728)xl34217728;

RX ::RUM-67108864)/67
1 0 8 8 6 4 ;

ROM ::3589XRDM; RDM 9- nDM-(RDM 1~ 34217728)xl342177281

RY ::(RDM-6710886
4 ),6 7108864 ;

R ::RXt2+RYt2; IF RZ1.O THEN GO TO LR;

R ::SQRT(-2xLN(R)/R)l

AEJ3 := XEIJJ := RXXcR; BJJ3 = YriJ3= RYXR;
END;

AENI := BEN3 := XCN3 := YENJ := 0;

FAST TRANSFORM (A 'B.Mu FALSE )

FASTTRANSFORM (A eBPM.TRUE) I

SSI := 552: 0; FOR ~J :0 STEP 1 UNTIL N DO
B3EGIN SS1 : (AtJ3-XCEJ3)t2tSS18 AEJ3 := xr,)3;

SS2 := (BCJJ-YCJ])t2+SS2 $ BCJ3 := YCJ3$

END;

SS1 := SGRT(SSI/N); SS2 := SQRT(SS2/N)l

.COMMENT LIST ROOTmMEAN-USQUARE ERRORSFOR REAL AND IMAGINARY



PARTS OF THE COMPLEX TRANSFORM-INVERSE PAIR;

,UTREAL(ISSI); OUTREAL(1#SS2)1

,EALTRANSI7OR4(Ao-t3,M#FALSE);

.EALTRANSFORWtAeBPMe TRUE);

lSi := S52 :~0; FOR J **= 0 STEP I UNTIL N DO

IEGIN SSI : (AEJJ-XEJ3),f2+SS1; AEJ3 := XEJJ;

SS2 ::= (8EJJ-YLJJ)f2.552; t3EJJ := YEAJ;

AND;

,Sl := SdRT((SSI+SS2)/(N+N));

'OMMENT LIST ROOT-MEAN-SQUARE ERROR FOR REAL TRANSFORM-INVERSE PAIR;

IUTREAL(IOSS1);

.ND;


